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Abstract. The properties of magnetic impurities in small metallic clusters are investigated in the framework
of the Anderson model by using exact diagonalization methods. Parameters representative of the Kondo
limit are considered. The spin gap ∆E = E(S=1, 3/2) − E(S=0, 1/2) shows a remarkable band-filling
dependence that can be interpreted in terms of the cluster-specific conduction-electron spectrum. Finite-
temperature properties such as the magnetic susceptibility and specific heat are calculated exactly in the
canonical and grand canonical ensembles. The structural dependence is illustrated.

PACS. 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and
nanocrystals – 75.20.Hr Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy
fermions – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

In past years, itinerant magnetism in 3d transition-metal
clusters has been the subject of numerous systematic ex-
perimental and theoretical studies [1,2]. In contrast, very
little is still known about clusters involving rare-earth
atoms, where the magnetic moments have a strongly local-
ized character [3–5]. In solids, the rare-earth compounds
show remarkable magnetic phenomena, which are intrin-
sically related to the localized f electrons and to their
interactions with the conduction-band electrons [6–8]. It
would be therefore very interesting from the point of view
of cluster physics to understand how these interactions are
affected by finite size effects and how the resulting mag-
netic properties depend on the size, structure and compo-
sition of the cluster.

A single rare-earth impurity in a metallic cluster is
probably the simplest physical situation for studying the
magnetic behaviour of localized magnetic moments in fi-
nite systems. In solids, valence fluctuations and magnetic
screening lead to the Kondo effect which is characterized
by the formation of a singlet ground-state between the
localized magnetic moment of the impurity and the de-
localized conduction electrons [7,8]. At low temperatures
the local moment is masked by the spins of the conduc-
tion electrons, that build a polarization cloud which cou-
ples antiferromagnetically with the impurity moment. At
temperatures higher than the Kondo temperature TK , in
other words, when kBTK is of the order of the singlet-
triplet gap ∆E, the singlet state is broken and the lo-
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cal moment may be observed directly in a susceptibility
measurement. Physically, one expects to observe a cluster-
specific behaviour when the radius of the cluster is com-
parable or smaller than the spatial extension ξK of the
screening cloud (Kondo length). Interesting size and struc-
tural dependences should be observed, since the binding
energy ∆E of the Kondo singlet is expected to depend
crucially on the hybridizations between the f -orbitals and
the delocalized valence states close to the Fermi energy.
The purpose of the present paper is to discuss this prob-
lem by reporting a few first results on small clusters, that
were obtained using the Anderson impurity model [9] and
exact diagonalization methods. A more detailed account
of our investigations will be published elsewhere.

2 Theory

We consider an N -atom cluster containing N−1 simple-
metal atoms and one magnetic impurity. The model
Hamiltonian is given by

Ĥ = Ĥs + Ĥf + Ĥsf . (1)

The first term,

Ĥs = −tss
∑
〈i,j〉,σ

ĉ†iσ ĉjσ , (2)

describes the s-like valence-electron states of the simple-
metal atoms and of the impurity atom using a single-band
tight-binding model. As usual, ĉ†iσ (ĉiσ) refers to the cre-
ation (annihilation) operator of an electron with spin σ
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at the s orbital of atom i, and tss to the nearest-neighbor
(NN) s-electron hopping integral. Possible differences be-
tween the s levels εs in different atoms are disregarded
by setting εs = 0 at both the impurity (i = 0) and the
metal-host sites (1 ≤ i ≤ N − 1). The second term,

Ĥf = εf
∑
σ

n̂fσ + Uff n̂f↑n̂f↓, (3)

concerns the magnetic degrees of freedom of the impu-
rity[9]. Here n̂fσ = f̂†σf̂σ is the electron number operator,
εf the energy, and Uff the Coulomb-repulsion integral of
the localized f -like level. The orbital degeneracy of the
f -level is neglected for simplicity. Finally, the third term,

Ĥsf = Vsf
∑
σ

(
f̂†σ ĉ0σ + ĉ†0σ f̂σ

)
, (4)

takes into account the coupling between the f level and
the delocalized electrons by means of an intra-atomic s−f
hybridization at the impurity atom i = 0.

Ĥ may be written in terms of the single-particle eigen-
states â†k =

∑
i αik ĉ

†
i of Ĥs as

Ĥ =
∑
kσ

εk n̂kσ +
∑
σ

εf n̂fσ + Uff n̂f↑n̂f↓

+
∑
kσ

Vkf
(
f̂†σâkσ + â†kσ f̂σ

)
. (5)

The s-electron eigenenergies are denoted by εk ( [Ĥ, a†kσ] =
εk a

†
kσ ) and the k−f hybridizations by Vkf = α0kVsf .

Notice that εk and Vkf depend strongly on the size and
structure of the cluster. As we shall see, this form of the
Hamiltonian is particularly useful in cases where symme-
try considerations allow to reduce the number of conduc-
tion electron states that couple to the impurity.

The model is solved numerically by expanding its
eigenfunctions |Ψl〉 in a complete set of basis states |Φm〉
which have definite occupation numbers nmiσ at all orbitals
iσ, i.e., n̂iσ|Φm〉 = nmiσ|Φm〉 with nmiσ = 0 or 1. The val-
ues of nmiσ satisfy the usual conservation of the number
of electrons ν = ν↑ + ν↓ and of the z component of the
total spin Sz = (ν↑ − ν↓)/2, where νσ =

∑
i n

m
iσ. Ground-

state and excited-state properties are calculated exactly
by using standard diagonalization procedures [10]. In par-
ticular, the spin gap is given by

∆E = E(S = 1, 3/2)−E(S = 0, 1/2), (6)

where E(S) stands for the lowest eigenenergy of spin S.
Relevant finite-temperature properties, like the magnetic
susceptibility of the impurity

χf =
(
〈S2
zf 〉 − 〈Szf 〉2

)
/(kBT ), (7)

and the specific heat

C =
(
〈E2〉 − 〈E〉2

)
/( kBT 2 ), (8)

are determined in the canonical and grand-canonical en-
sembles. T refers to the temperature of the cluster source

that defines the macroscopic thermal bath with which the
clusters are in equilibrium before expansion in the beam.
Average is applied then to the ensemble of clusters in the
beam.

For clusters having a high point group symmetry (e.g.,
face-centered cubic clusters of nearly spherical shape) a
decoupling scheme is introduced that permits the calcu-
lation of finite-temperature properties of relatively large
clusters containing of the order of 80 atoms. For example,
when the impurity is located at the center of symmetry of
the cluster only the fully symmetric (s-like) single-particle
conduction states have a non-vanishing Vkf . Thus, only
these k states couple with the magnetic degrees of free-
dom. The other conduction states may be solved indepen-
dently and need not be included in the many-body diago-
nalization. The grand partition function is then given by

Ω = Ωf Ω0, (9)

where

Ωf =
∑
νf

∑
α

e−β[ εα(νf )−µ νf ] (10)

refers to the states that couple to the impurity, and

Ω0 =
∏
kσ

[
1 + e−β(εk−µ)

]
(11)

to the remaining conduction-electron states having
Vkf = 0.

In Eq. (10), εα(νf ) denotes the eigenenergy of the αth
many-body state having νf electrons in the subspace that
couples with the impurity f level. In Eq. (11), εk refers
to the single-particle states that do not hybridize with
the f level. Notice that both subsystems share the same
chemical potential µ. The properties of physical interest
(magnetic susceptibility χ, specific heat C, etc.) are then
obtained from the derivatives of G = kB lnΩ [11].

3 Results and discussion

The parameters used in the calculations are representative
of the Kondo limit: εf/tss = −10, Vsf/tss = −0.1, and
Uff →∞. The resulting singlet-triplet gap in the case of
a two-level system is ∆E0 = 2V 2

sf/|εf | = 2×10−3 eV.
Fig. 1 shows results for the band-filling dependence of

the spin gap ∆E = E(S=1, 3/2)−E(S=0, 1/2) in a seven-
atom cluster with a magnetic impurity at the apical site
i=1 (see Fig. 2). For ν = 2, 8, and 14 the ground state is
a singlet, and ∆E is of the order of the singlet-triplet gap
∆E0 in the two-level system. For ν = 4−6 and ν = 10−12
the singlet-triplet splitting vanishes since the ground state
is degenerate (∆E = 0). In contrast, for ν = 3, 7, 9, and 13,
∆E is of the order of the s-electron hopping parameter tss,
which indicates that here we are dealing essentially with
an electron-hole excitation within the conduction band.

In metallic solids the behaviour of magnetic impurities
and in particular the Kondo temperature depend crucially
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Fig. 1. Singlet-triplet gap ∆E of a seven-atom icosahedron
(see Fig. 2) with a magnetic impurity in an apical site (e.g.,
i=1) as a function of the total number of electrons ν. Notice
that ∆E is of the order of the two-level gap ∆E0 = 2V 2

sf/|εf | =
2×10−3 eV for ν = 2, 8, and 14, and that ∆E is of the order
of tss for ν=3, 7, 9, and 13.
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Fig. 2. Illustration of
the structures consid-
ered in the calcula-
tions: for N = 7 (A)
and N = 13 (B).

on the value of the density of states at the Fermi level.
It is therefore very interesting to investigate to which ex-
tent the finite-size counterpart of this phenomenon share
such characteristics. In fact, the band filling dependence
of ∆E may be qualitatively understood in terms of the
cluster-specific single-particle spectrum εk and k−f hy-
bridizations Vkf shown in Table 1. Let us first note that
in the considered parameter regime (Kondo limit) the
f -level occupation is always very close to 1 (ν − 1 elec-
trons in delocalized s states). When the total number of
valence electrons (s and f) in the cluster is ν = 2, the low-
lying many-body states can be approximately described
by considering only the impurity level εf and the lowest
s-electron state (k = 1 in Table 1), this is a consequence of
the fact that the gaps in the single-particle spectrum are
large (for example, ε2−ε1 ∼ 4tss). Thus, the singlet-triplet
gap can be obtained accurately by solving this two-level
problem. One obtains ∆E1 = 2V1f/(ε1−εf) which is very
close to the exact result shown in Fig. 1. The situation
changes for ν = 3 since the k = 1 level is fully occupied in
the lowest energy configurations. The s−f hybridization
may only promote an electron to the levels having k ≥ 2,
which are empty for both spin directions, leaving the im-
purity spin essentially frozen (S = 1/2). The first S = 3/2
state corresponds to the creation of an electron-hole pair
in the conduction-band spectrum, and consequently the
excitation energy is of the order of ε2−ε1 ∼ 4tss. Further-

Table 1. Single-particle energies εk, local component α0k of
state k at the impurity site, and kf hybridizations Vkf for a
seven-atom icosahedral cluster (see Fig. 2). Vsf/tss=− 0.1.

k εk/tss α2
0k (Vkf/tss)

2

1 −4.702 0.212 0.0021

2 −0.618 0.000 0.0000

3 −0.618 0.000 0.0000

4 1.000 0.500 0.0050

5 1.618 0.000 0.0000

6 1.618 0.000 0.0000

7 1.702 0.289 0.0029

more, the fact that V2f = V3f = 0 leads to a ground-state
spin degeneracy for ν = 4−6, this explains that ∆E = 0
for ν = 4−6. The same effect occurs for ν = 10−12. The
rest of the band filling dependence may be understood in
an analogous way. For example, for ν = 7, 9, and 13, we
recover the same situation as for ν = 3. Here we find a
closed-shell configuration for the conduction electrons and
the first spin excitation corresponds to the formation of
an electron-hole pair in the conduction band. The most
interesting cases are for ν = 2, 8, and 14, where very small
singlet-triplet gaps are obtained, that, as we shall see later,
can be interpreted as a finite-size equivalent of the Kondo
effect.

The finite-temperature properties in the presence of
low-energy Kondo-like excitations are shown Fig. 3. Here,
results are given for the impurity magnetic susceptibility
χf (T ) and the specific heat C(T ) for a seven-atom icosa-
hedral cluster with the magnetic impurity at site i = 1
(see Fig. 2). Statistical averages were calculated in the
canonical ensemble with ν = 8 (dashed line) and in the
grand canonical ensemble with a temperature-dependent
chemical potential µ(T ) that yields 〈ν〉 = 8 for all T (full
line). The singlet ground state for ν = 8 is responsible for
the vanishing magnetic susceptibility χf (T ) at low tem-
peratures (T > 0). With increasing T , χf increases very
rapidly as the triplet state is populated. A maximum is
obtained at the temperature TK of the order the singlet-
triplet gap ∆E/kB ' 10 K. Finally for T > TK , χ de-
creases following a Curie-like law (χf ∝ 1/T ) as in the
case of free magnetic impurities or of magnetic impurities
in insulators.

Another consequence of the singlet-triplet excitation
∆E is the maximum in the specific heat C(T ) at approx-
imately the same temperature for which χf (T ) is maxi-
mum. In fact, C(T ) is very close to that of a two-level
Schottky anomaly. Only at much higher temperatures (of
the order of Tss/kB ' 104) one observes a further expo-
nential increase of C(T ) due to electron-hole excitations
within the s band. The position of the peaks in χf (T )
and C(T ) scale with ∆E. As an example we also show
in Fig. 3 the results for a thirteen-atom icosahedron with
a magnetic impurity at the center and 〈ν〉 = 20 (dotted
line). In this case we calculated the partition function in
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Fig. 3. Temperature-dependence of (A) impurity susceptibil-
ity χf (T ) and (B) specific heat C(T ). Results are given for a
7-atom cluster with the impurity at an apical site (i=1, see
Fig. 2) in the canonical ensemble (ν=8, dashed curve) and in
the grand canonical ensemble (〈ν〉=8, full curve), as well as for
a 13-atom icosahedron with the impurity at the center (〈ν〉=20,
dotted curve). The vertical arrows indicate the corresponding
Kondo temperatures TK = ∆E/kB .

the grand canonical ensemble using the decoupling scheme
given by Eqs. (10, 11). In order to illustrate how the impu-
rity magnetic moment is screened at temperatures below
TK = ∆E/kB, we show in Fig. 4 the temperature de-
pendence of the spin compensation cloud Sc(T ), which is
defined as

Sc(T ) =
N∑
i=1

〈Ŝzf · ŝzi 〉. (12)

〈Ŝzf · ŝzi 〉 is the spin correlation function between the im-
purity spin Ŝf and the conduction-electron spin ŝi at site
i. Strong antiferromagnetic correlations at temperatures
well below TK = ∆E/kB lead to a complete compensa-
tion of the impurity magnetic moment by the delocalized
electrons (Sc = −1/4 for T = 0), while at temperatures
higher than TK these correlations are strongly suppressed
(Sc → 0 for T > TK).

Further studies are needed in order to extend the re-
sults presented in this article, for example, by perform-
ing calculations on larger clusters as a function of size
and structure. Research in these directions is currently in
progress.
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Fig. 4. Temperature dependence of the spin compensation
cloud. Results are given for the seven-atom cluster illustrated
in Fig. 2 with a magnetic impurity at site i = 1. The dashed
curve corresponds to the canonical ensemble with ν = 8 and
the full curve to the grand-canonical ensemble for 〈ν〉 = 8. The
Kondo temperature TK = ∆E/kB is indicated by the arrow.
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